| KSME 18PD092 | 단일 연삭 입자 메키니즘 기반 연삭 공정해석 연구
김동권, 홍요섭, 김지수, 박형욱 ¹(울산과학기술원) |
| KSME 18PD093 | 액체질소 및 나노유체 동시 분사 티타늄 합금 밀링가공의 열유동 특성에 관한 수치적 연구
김성훈, 이상현, 김성민 ¹(성균관대) |
| KSME 18PD094 | 얼음백업층 형성을 통한 CFRP의 가공결함 제거 효과 분석
박기문, 위진, 고대조 ¹(영남대) |
| KSME 18PD095 | 헬릭스 널찍이 드릴을 이용한 CFRP의 드릴링 후 표면가질기의 분석
위진, 박기문, 고대조 ¹(영남대) |

| 트라이블로지 |
| KSME 18PD096 | 사파이어 기판의 뺨 그란인당 공정에서 실리카 임차크기에 따른 표면가질기 안정화에 관한 연구
서준영, 김태경, 이현섭(동명대) |
| KSME 18PD097 | 스피쳐기어의 마찰에 의한 동력손실해석
박현일 ¹(강릉원주대) |
| KSME 18PD098 | 양극전하 공정을 이용한 탄소나노튜브 박막의 내구성 향상기법 연구
장성윤 ¹, 김현준(경북대) |
| KSME 18PD099 | 임지유동배드를 통한 스테인레스 표면가공에서 연마재에 따른 연마특성 연구
잠태경, 서준영, 이현섭(동명대) |

| 기타 |
| KSME 18PD100 | AMOLED 디스플레이 제조용 Invar합금의 테이퍼 각도 조절을 위한 진동자 이용 펜토초레이저 홈 드릴링
최원석 ¹, 김호영, 신영권, 지석영, 조성학(과학기술연구원, 한국기계연구원), 전진우, 최두식(한국기계연구원) |
| KSME 18PD101 | Preliminary Results on Failure Mechanisms of Anterior Cruciate Ligament Repetitive Loading
유승희, 오유근 ¹(홍익대) |
| KSME 18PD102 | 성형작업 성능 증대를 위한 해석기반 최적설계
유기민 ¹, 임영남, 장성우, 최태진(중앙대) |
| KSME 18PD103 | 펜토초 레이저를 이용한 투명전극 미세가공
김훈영, 최원석, 지석영, 신영권, 전진우, 조성학(한국기계연구원, 한국과학기술대학교) |

2018년 6월 2일(토)

09:00-11:00 산학 세션

11:00-12:00 패널 토의
Vibration assisted taper angle control using femtosecond laser hole drilling on thin Invar alloy for AMOLED production

* Korea University of Science and Technology (UST), † Korea Institute of Machinery and Material (KIMM)

1. INTRODUCTION

One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature[9]. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. Fig. 1 shows FMM chemical etching process. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration[9]. In this paper, a femtosecond laser drilling for thickness of 30 µm FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system.

Fig. 1 RGB evaporation process of AMOLED production

2. EXPERIMENTAL SETUP

We used Ti: Sapphire based femtosecond laser with attenuating optics, coaxial illumination, vision system, 3-axis linear stage and vibration module.

Fig. 2 Schematic of vibration assisted femtosecond laser machining system

3. EXPERIMENTAL RESULT

Fig. 3 shows vibration assisted femtosecond laser hole drilling result. By controlling vibration amplitude, entrance and exit diameters are controllable.

Fig. 3 Experimental result of vibration assisted femtosecond laser hole drilling

Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

REFERENCE